VII . ПРИНЦИПЫ ОПРЕДЕЛЕНИЯ РАСЧЕТНЫХ ХАРАКТЕРИСТИК ГРУНТОВ
70. Надежность расчета устойчивости откосов в значительной степени определяется достоверностью принятых значений расчетных характеристик грунтов.
71. Основными характеристиками механических свойств грунтов для расчетов устойчивости откосов являются сдвиговые характеристики - угол внутреннего трения φ и сцепление с. Определение расчетных значений этих характеристик - одна из основных задач инженерно-геологических изысканий, методика и порядок проведения которых на участках глубоких выемок и высоких насыпей должны быть подчинены решению этой задачи при минимальных затратах.
Расчетные значения сдвиговых характеристик устанавливаются на основе тщательного анализа данных инженерно-геологических изысканий, включая данные полевых и лабораторных испытаний грунтов.
Использовать табличные данные допускается только для песчаных и гравийных грунтов, не содержащих значительных примесей глинистых и пылеватых частиц. Табличные данные для глинистых грунтов могут быть использованы лишь в самых приближенных расчетах.
72. Инженерно-геологические изыскания на участках глубоких выемок и высоких насыпей, а также карьеров, грунт из которых предполагается использовать для возведения высоких насыпей, рекомендуется проводить в два этапа.
73. На первом этапе проводится в основном зондировочное бурение и отбираются пробы грунта с нарушенной структурой для определения основных показателей, характеризующих состав и состояние грунта в пределах каждого слоя:
- влажности;
- пределов пластичности;
- коэффициента консистенции;
- удельного веса;
- коэффициента водонасыщения.
Бурение производится по поперечникам, намечаемым по данным предварительного трассирования. Расстояние между поперечниками назначается в зависимости от конкретных инженерно-геологических особенностей проложения трассы и, как правило, не должно превышать 50 м.
Количество скважин на поперечнике на первом этапа проектирования обычно принимается не менее 3.
74. Для определения состава и состояния глинистых грунтов на каждом поперечнике из каждого слоя рекомендуется отбирать не менее 10 проб. Количество проб песчаных грунтов может быть уменьшено.
75. Монолиты грунтов на первом этапе изысканий отбирают выборочно для определения плотности, а также для предварительных испытаний на сжимаемость (при обследовании грунтов основания высокой насыпи) и сопротивляемость сдвигу.
76. Первичная обработка данных инженерно-геологических изысканий сводится к построению графиков рассеяния значений показателей состава и состояния грунтов для каждого слоя (рис. 20 ). При этом строят графики для каждого поперечника и сводный график для всего участка трассы в целом.
Рис. 20. Графики рассеяния значений основных классификационных показателей ( Wnp и B ) глинистого грунта
Степень однородности того или иного слоя оценивается по графикам рассеяния значений основных классификационных показателей для этого слоя. Основными классификационными показателями для глинистых грунтов являются число пластичности Wn и коэффициент консистенции ( Wnp - природная влажность, Wp - граница раскатывания). Слой следует считать однородным в отношении состава и состояния грунта, если отклонения отдельных значений основных классификационных показателей не выходят за рамки одной группы по принятой классификации. При этом 10 % крайних экспериментальных точек в расчет не принимаются.
По результатам обработки указанных данных уточняют как по глубине, так и в плане границы расчетных слоев, считаемых однородными в отношении значений их физико-механических характеристик.
77. Для каждого однородного слоя строят осредненную кривую накопленной частоты значений того или иного показателя (рис. 21), по которой, зная число определений этого показателя (число экспериментальных точек), определяют его гарантированное расчетное значение для данного слоя, руководствуясь рекомендациями табл. 12.
Рис. 21. Интегральная кривая для определения расчетного значения коэффициента консистенции; число определений - 20
Таблица 12
Определение гарантированных значений показателей физико-механических свойств грунтов (по Н.Н. Маслову и З.В. Пильгуновой)
Число определений |
< 10
|
10-15
|
16-20
|
21-25
|
26-35
|
36-50
|
51-75
|
> 75
|
Накопленная частота, которой соответствует гарантированное значение при надежности 99 %
|
0
|
10
|
15
|
20
|
25
|
30
|
35
|
40
|
Примечание . При определении гарантированных значений влажности и коэффициента консистенции накопленная частота, указанная в таблице, соответствует случаям превышения гарантированного значения.
78. Расчетные значения показателей состава и состояния используются в качестве исходных для установления сдвиговых характеристик по таблицам (для предварительных расчетов), а также для выбора монолитов для механических испытаний грунтов в лаборатории.
79. На втором этапе инженерно-геологических изысканий проводят дополнительное бурение с целью уточнения расположения границ отдельных слоев и отбора необходимого количества монолитов, предназначаемых для механических испытаний грунта. Места отбора этих монолитов назначают с таким расчетом, чтобы показатели состава и состояния грунта их в возможно большей степени соответствовали расчетным значениям этих показателей, установленным по результатам первого этапа изысканий для слоя в целом. В качестве основной исходной характеристики для глинистых грунтов принимается число пластичности и коэффициент консистенции.
Испытания грунтов на сдвиг
80. Сопротивляемость грунта сдвигу в лаборатории определяется на приборах прямого сдвига или трехосного сжатия. До проведения испытаний по данным полевых изысканий должны быть тщательно изучены и проанализированы конкретные местные условия работы грунта в откосе или его основании, например условия увлажнения, наличие трещиноватости и т.п.
Все эти факторы подлежат обязательному учету как в методике подготовки образцов к испытанию, так и в методике самих испытаний. Например, если образцы отбирались в момент, когда временные грунтовые воды (верховодка) отсутствовали, а в какие-то периоды года данный слой может быть водоносным, необходимо до испытаний подвергнуть образцы водонасыщению; если грунтовая толща имеет явно выраженную трещиноватость, то необходимо наряду с испытанием на сдвиг по случайно взятой поверхности провести испытания по поверхностям, разделяющим грунтовые блоки; если толща слоиста, то необходимы испытания на сдвиг по контакту слоев, причем в этом случае должны применяться только приборы прямого сдвига и т.д.
81. При оценке сопротивляемости глинистых грунтов сдвигу в лаборатории следует исходить из теории плотности-влажности, в соответствии с которой сопротивляемость грунта сдвигу в общем виде может быть выражена уравнением
где Р - полное нормальное напряжение на площадке сдвига;
φ W - угол внутреннего трения, зависящий от влажности грунта в момент сдвига;
cWG - сцепление, зависящее от влажности и плотности, характеризуемой величиной коэффициента водонасыщения G грунта в момент сдвига.
где Σ WG - часть полного сцепления, имеющая водно-коллоидную природу;
cc - сцепление, обусловленное жесткими связями.
Величина коэффициента водонасыщения устанавливается по формуле
где W - влажность в долях единицы;
γо - удельный вес;
ε - коэффициент пористости;
Δ - удельный вес воды.
82. Для определения значений сдвиговых характеристик грунтов, слагающих откос или основание выемки, а также основание насыпей, необходимо испытывать монолиты, отобранные из различных однородных слоев. Из числа отобранных в пределах данного слоя монолитов для испытаний на сдвиг выбирают лишь те, показатели состава и состояния которых (прежде всего пределы и число пластичности, а также коэффициент консистенции) наиболее близки расчетным значениям, установленным для слоя в целом, как указано в пп. 76 - 78.
83. Для оценки сопротивляемости сдвигу грунта, предназначаемого к использованию в насыпи, предварительно отбираются пробы с нарушенной структурой. Принцип отбора проб тот же, что и монолитов. Для отобранных проб определяют оптимальную влажность и максимальную плотность по методу стандартного уплотнения. После этого изготовляются путем трамбования или формовки образцы при оптимальной влажности и требуемой плотности, устанавливаемой в соответствии со СНиП II -Д.5-62 в зависимости от глубины расположения данного слоя от поверхности насыпи.
84. Условия испытаний и необходимое количество образцов зависят от того, будет ли грунт водонасыщен полностью или не полностью.
Испытание практически полностью водонасыщенных грунтов
85. В случае практически полностью водонасыщенных грунтов ( G ≥ 0,95 ± 0,05) влажность грунта становится аналогом его плотности и сопротивляемость сдвигу определяется уравнением
где cW - сцепление, зависящее от влажности грунта в момент сдвига.
Остальные обозначения - прежние.
Задача испытаний в этом случае сводится к установлению зависимости угла внутреннего трения φ W и сцепления с W от влажности в зоне сдвига. Для получения этих зависимостей испытывают ряд образцов, имеющих различную влажность под несколькими (как правило, не менее 3) нормальными нагрузками.
86. Величину нормальных нагрузок при сдвиге следует назначать с учетом реальных величин нагрузок, которые будут действовать в данных условиях. Максимальная величина нагрузки определяется высотой откоса и объемным весом грунта.
Кроме максимальной, назначают меньшие нормальные нагрузки (как правило, не менее 2), под которыми также будет осуществляться сдвиг. Величины этих нагрузок назначают таким образом, чтобы интервал от максимальной до нулевой нагрузки был разбит примерно на равные отрезки. Под каждой выбранной нормальной нагрузкой производится сдвиг обычно не менее четырех идентичных образцов, имеющих различную влажность в момент сдвига.
87. Различие во влажности образцов в момент сдвига можно получить следующим образом:
а) выдерживанием каждого образца, предназначенного для сдвига при одной и той же нормальной нагрузке, в течение различного времени под той же нагрузкой, под которой производится сдвиг.
В этом случае первый образец сдвигается немедленно после приложения заданной нормальной нагрузки. Второй образец сдвигается только после выдерживания его под данной нагрузкой до практически полного завершения консолидации, а два других образца перед сдвигом выдерживаются под нагрузкой с таким расчетом, чтобы их влажность в момент сдвига имела два различных промежуточных значения между влажностями первого и второго образцов;
б) выдерживанием образцов в течение различного времени под одной достаточно большой по величине нагрузкой, которая должна быть не меньше максимальной нормальной нагрузки при сдвиге. Предельное значение уплотняющей нагрузки определяется возможностью передать ее на образец без выдавливания грунта в щели.
В этом случае по одному образцу под каждой нормальной нагрузкой испытывается без предварительного выдерживания под уплотняющей нагрузкой;
в) выдерживанием образцов до практически полной консолидации или в течение заданного времени под различными нагрузками, наибольшая из которых должна примерно вдвое превышать максимальную нормальную нагрузку при сдвиге. Три образца из этой серии испытываются на сдвиг без предварительного уплотнения.
Уплотняющие нагрузки должны назначаться с таким расчетом, чтобы охватить интересующий нас в данных конкретных условиях диапазон влажностей, а также дать возможность уверенно экстраполировать кривые в области высоких влажностей.
После завершения предварительного уплотнения получают: 3 образца, не подвергавшиеся уплотнению и имеющие максимальную влажность; 3 образца, максимально уплотненные, имеющие минимальную влажность, и две группы по 3 образца, имеющие промежуточные влажности. Каждый из трех образцов группы испытывается под одной из принятых нормальных нагрузок.
88. Интенсивность приложения сдвигающей нагрузки (ступенчатой или непрерывной) рекомендуется назначать с таким расчетом, чтобы сдвиг образца происходил в течение 3 - 10 мин, не более. При ступенчатом приложении нагрузки (гирями) очередную нагрузку следует прикладывать, не дожидаясь прекращения деформаций от предыдущей ступени. Достаточно лишь убедиться, что деформация сдвига, регистрируемая мессурой, носит затухающий характер, что устанавливается сопоставлением 4 - 5 отсчетов по мессуре, взятых с интервалом 3 - 5 сек.
При использовании ступенчатой нагрузки целесообразно принимать небольшие ступени по 100 - 200 г на рычаг в зависимости от консистенции грунта. Сдвиг считается завершенным в случае получения незатухающей деформации, заканчивающейся «срывом» образца. При применении автоматического записывающего устройства момент сдвига определяется непосредственно по диаграмме.
89. Немедленно после завершения сдвига и извлечения образца из зоны сдвига отбирают пробы на влажность. Если произошел «срыв», пробы следует отбирать из обоих половинок образца.
90. Результаты испытаний наносят в виде точек на сетку координат (рис. 22), по оси абсцисс которой откладывается влажность грунта ( W ) в зоне сдвига в %, а по оси ординат - сопротивляемость сдвигу ( SPW ). Точки, относящиеся к одной и той же нормальной нагрузке при сдвиге, обозначают одинаковыми значками и через них проводят осредняющие кривые, каждая из которых представляет собой зависимость сопротивляемости грунта сдвигу при данной нормальной нагрузке от влажности.
Рис. 22. Зависимость сопротивляемости грунта сдвигу от влажности при различных нагрузках
Полученный график перестраивают в график зависимости сопротивляемости сдвигу от нормальной нагрузки ( ) для различных влажностей (рис. 23). Последние зависимости принимаются прямолинейными (через экспериментальные точки проводят прямые), причем угол наклона каждой из таких прямых к оси абсцисс принимается за угол трения грунта при данной влажности, а отрезки, отсекаемые на оси ординат, принимаются за сцепление грунта при данной влажности.
Рис. 23. Зависимость сопротивляемости грунта сдвигу от нагрузки при различных влажностях
Найденные значения сцепления и углов трения наносят на графики, устанавливающие зависимости сцепления и угла внутреннего трения от влажности грунта (рис. 24). Эти графики могут использоваться для определения расчетных параметров сопротивляемости грунта сдвигу при любой интересующей исходной влажности.
Рис. 24. Зависимость угла внутреннего трения и сцепления от влажности
91. Величина структурного сцепления может быть определена сопоставлением результатов испытаний на сдвиг образцов с ненарушенной структурой и образцов, предварительно разрезанных по плоскости сдвига и выдержанных перед сдвигом под нагрузкой, эквивалентной их плотности-влажности.
92. При обработке результатов сдвиговых испытаний следует графики зависимости сопротивляемости грунта сдвигу от влажности строить в полулогарифмическом масштабе (сопротивляемость сдвигу откладывается в логарифмическом масштабе, влажность - в линейном). В этом случае зависимость часто превращается в прямолинейную, что упрощает осреднение и экстраполяцию, а также позволяет получить искомую зависимость при меньшем количестве образцов (рис. 25).
Рис. 25. Зависимость сопротивляемости грунта сдвигу от влажности при различных нагрузках (в полулогарифмическом масштабе)
93. Для получения большего количества экспериментальных точек или при недостаточном количестве монолитов можно производить два сдвига на одном образце, если его начальная высота не менее 3 см.
94. При применении приборов трехосного сжатия руководствуются теми же принципами подготовки образцов и проведения испытаний, которые изложены выше. Различие заключается в том, что по результатам стабилометрических испытаний строят зависимости вертикального напряжения от величины влажности в момент разрушения образца для двух-трех значений бокового давления σ2. Далее с полученного графика для нескольких значений влажности снимают значения σ1, соответствующие тому или иному значению σ2; по полученным значениям строят круги Мора и, проводя к ним касательные, определяют величины сцепления и угла трения обычным порядком, после чего строят искомые зависимости и . Испытание подготовленных образцов рекомендуется вести в быстром темпе (3 - 10 мин.) в условиях закрытой системы.
Испытания не полностью водонасыщенных образцов
95. В отличие от испытания полностью водонасыщенных образцов, при испытании не полностью водонасыщенных образцов G > 0,95 необходимо учитывать возможную неэквивалентность изменения влажности изменению плотности грунта. Это вызывает необходимость измерять не только влажность в зоне сдвига, но и плотность в зонах, прилегающих к зоне сдвига. Для этого из этих зон нужно отбирать пробы на плотность с парафинированием.
96. Если в процессе уплотнения образца под нагрузкой и изменения его влажности величина коэффициента водонасыщения практически не меняется (± 0,05), обработку результатов можно вести так же, как и при полностью водонасыщенных грунтах. Обычно это может иметь место, когда коэффициент водонасыщения глинистого грунта перед испытанием на сдвиг оказывается более 0,8. Чтобы более точно убедиться в такой возможности, достаточно провести компрессионные испытания двух-трех образцов, подготовленных так же, как и для сдвига. Если в процессе уплотнения под нагрузками, не превышающими реальных нагрузок, коэффициент водонасыщения будет меняться не более чем на 0,1, допускается обработку результатов проводить аналогично обработке результатов испытаний полностью водонасыщенных образцов, учитывая лишь возможный в этом случае разброс точек.
97. Если коэффициент водонасыщения будет меняться в более широких пределах, необходимо получить расчетные кривые для различных коэффициентов водонасыщения. Для этого нужно иметь точки, соответствующие не только одинаковой нагрузке, но и практически одинаковой величине коэффициента водонасыщения, так как только через такие точки можно проводить осредняющие кривые. Для получения подобных кривых необходимо увеличить количество испытываемых образцов.
98. Во всех случаях, когда плотность и влажность образцов грунта в процессе испытания при принятых нагрузках практически не выходит за рамки допускаемых отклонений, обработка результатов испытаний осуществляется упрощенным способом. Экспериментальные точки наносят непосредственно на график зависимости сопротивляемости сдвигу от нагрузки и через эти точки проводят линию, выражающую зависимость , по которой и определяются значения φ W и с W . При этом различия в величинах объемного веса скелета грунта не должны, как правило, превышать ± 0,02 г/см3, а отклонения во влажности для образцов с нарушенной структурой 0,5 - 1,0 %, для образцов с ненарушенной структурой - ± 1 ÷ 2 % (большие значения соответствуют грунтам с большим числом пластичности).
При проведении осредняющей прямой линии через экспериментальные точки необходимо учитывать фактические значения влажности и плотности грунта, соответствующие каждой экспериментальной точке, имея в виду, что чем ниже плотность и чем выше влажность образца в момент сдвига по отношению к тем значениям, которым соответствует проводимая прямая, тем ниже должны располагаться эти точки по отношению к этой прямой.
99. Расчетная плотность и влажность грунта, находящегося в зоне временного подтопления, устанавливается с учетом обводнения толщи. С этой целью образцы грунта при исходной плотности и влажности (природной в момент отбора монолитов при проектировании выемок и требуемой по СНиП при проектировании насыпей) перед испытаниями подвергают насыщению водой при нагрузке, соответствующей реально действующей с учетом эффекта взвешивания во всех необходимых случаях.
Предварительное водонасыщение следует вести до практического завершения изменения плотности и влажности грунта, контролируемого по изменению веса образца и его высоты, фиксируемой мессурой. Полученные значения плотности и влажности принимаются за расчетные при определении φ W и с W по соответствующим кривым.
|